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AI models have shown great potential in structure-based drug design, generating ligands
with high binding affinities. However, existing models have often overlooked a crucial
physical prior: Atoms must maintain a minimum pairwise distance to avoid atomic
collision, a phenomenon governed by the balance of attractive and repulsive forces. To
mitigate such atomic collisions, we propose NucleusDiff. It enforces spatial distance
constraints between atomic nuclei and auxiliary mesh points placed on a spherical
surface around each atom, approximating van der Waals boundaries to reduce atomic
collisions. We quantitatively evaluate NucleusDiff using the CrossDocked2020 dataset
and a COVID-19 therapeutic target, demonstrating that NucleusDiff reduces collision
rate by up to 100.00% and enhances binding affinity by up to 22.16%, surpassing state-
of-the-art models for structure-based drug design. We also provide qualitative analysis
through manifold sampling, visually confirming the effectiveness of NucleusDiff in
reducing atomic collisions and improving binding affinities.

structure-based drug design | statistical machine learning | manifold learning | generative AI

Structure-based drug design is a cornerstone of drug discovery, aiming at designing small
molecule ligands based on the geometric structures of biological targets, typically the
protein pockets. It faces significant challenges due to the vast chemical search space and
the complex geometric interactions between ligands and proteins in three-dimensional
Euclidean space (1). To cope with these challenges, machine learning has emerged as a
powerful tool for efficiently navigating the design space of small molecules and effectively
generating ligands with high binding affinities.

State-of-the-art deep generative models for the task generate ligands with high binding
affinities by leveraging physical properties, such as the equivariance of molecular systems
to rotations and translations (2–8). However, they suffer from certain limitations due to
the approximations in modeling. For instance, they treat each atom as a solid point, which
does not fully reflect the spatial extent that real atoms occupy in three-dimensional space.
Instead of being single points, atoms occupy a finite spatial region around each nucleus
due to the distribution of their electrons, which leads to an effective minimum distance
between atoms in a molecule. As illustrated in Fig. 1A, these factors collectively influence
the distribution and arrangement of electrons, adhering to a physical prior that requires
atoms to maintain a minimum pairwise distance to avoid atomic collision. Having
overlooked this principle, current deep generative models could breach the constraints
and result in atomic collision, where two atoms in the generated ligand–pocket pairs are
positioned too close to each other, as depicted in Fig. 2.

One straightforward approach to address this issue is to consider constraining atomic
pairwise distance into deep learning models as a regularization term. However, since this
is an atom-pairwise measure, the computational complexity scales quadratically with the
number of atoms. Therefore, a more efficient and effective method is necessary to address
the atomic collision problem.

1.1. Our Contributions. To tackle this challenge, we propose NucleusDiff. NucleusDiff
operates in two phases. The first phase, illustrated in Fig. 1B, incorporates inductive
biases based on established physical priors: NucleusDiff uses a geometric manifold,
which approximates the spatial boundary around each atomic nucleus defined by its van
der Waals radius. In the second phase, shown in Fig. 1C, NucleusDiff discretizes the
manifold into a set of triangle mesh points. Then, based on this, NucleusDiff uses a
regularization term to align the distance between nuclei and sampled mesh points with
the van der Waals radii. This alignment implicitly maintains proper pairwise atomic
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Fig. 1. (A) Illustration of the atomic nucleus and the geometric manifold of an atom. The manifold represents the spatial boundary defined by the van der
Waals radius, which sets the minimum distance between atomic nuclei. (B) Illustration of the manifold surrounding a molecule. (C) Illustration of the mesh
points obtained from discretizing a manifold. (D) Pipeline of NucleusDiff. NucleusDiff performs denoising diffusion on both the nuclei and the discretized mesh
points, where the distances between them approximate the van der Waals radii.

distances, and the complexity of modeling such a constraint
increases linearly with the number of atoms, making NucleusDiff
an efficient approach.

We verify the effectiveness of NucleusDiff using 100 K
protein–ligand binding complexes from the CrossDocked2020
(9) first. Our quantitative analysis demonstrates that Nucle-
usDiff significantly outperforms the state-of-the-art models.
NucleusDiff demonstrates promising performance by achieving a
22.16% improvement in binding affinity (Vina Score) compared
to the previous state-of-the-art method [TargetDiff (7)] on
CrossDocked2020. Owing to our design, NucleusDiff effectively
minimizes atomic collisions, achieving an almost negligible colli-
sion rate, with reductions reaching up to 100.00%. Additionally,
our case study on the COVID-19 therapeutic target shows that
NucleusDiff not only achieves a superior binding affinity, with
an improvement of up to 21.37% but also reduces the collision
rate by up to 66.67%.

In summary, the proposed NucleusDiff reaches an optimal bal-
ance in maintaining proper physical distances to avoid atomic col-
lision and preserving the critical biochemical properties including
binding affinity and stability. We believe this work demonstrates
how integrating motivated geometric constraints into generative
models can enhance the design of biologically relevant molecules
for structure-based drug discovery, offering a practical approach
for improving molecular generation in this field.

2. Results

2.1. Background.
2.1.1. Small molecules and proteins. In this work, we consider
small molecule ligands, which are sets of atoms in the 3D
Euclidean space, {vL, xL}, where vL represents the atomic

number and xL represents the atomic nucleus coordinate.
Proteins are macromolecules, i.e., chains of residues. In nature,
there are 20 types of residues. Each residue is a small molecule,
with a fixed backbone structure: a basic amino group, an acidic
carboxyl group, a side chain that is unique to each amino acid,
and a carbon C� connecting three components. In this work, we
consider modeling proteins in the backbone-level information,
i.e., the backbone atomic number and backbone atomic nucleus
coordinates, {vP , xP}.
2.1.2. Nucleus and manifold. Each atom is modeled as a nucleus
with a surrounding spatial boundary, characterized by its van
der Waals radius, as illustrated in Fig. 1. Recent works have
employed manifold learning over such spatial boundaries for
molecule property prediction (10, 11) and protein modeling in
structure-based drug design (12). In our approach, we model a
geometric manifold around each atomic nucleus in the ligand,
where the radius is set to the van der Waals value. This manifold,
sometimes referred to as the van der Waals surface or the solvent-
accessible surface (10), provides a natural geometric constraint
for molecular generation. Then we discretize the manifold into
triangle mesh points, a form suitable for computational analysis.
This is implemented using the Python package PyMesh (13).
For notation, for each ligand atom (vL, xL), the coordinate and
type of nuclei are the same as the atom-level, i.e., vN , vL

and xN , xL. The coordinate of the discretized points on the
manifold is marked as xM . Notice that we use a special token to
delegate the electron points on the manifold.
2.1.3. Structure-based drug design. The structure-based drug de-
sign (SBDD) task utilizes the geometric structures of proteins
to design and optimize ligands, like small molecules. This
can be formulated as a conditional distribution modeling
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Fig. 2. (A) Visualization of generated ligands for the target 2HCJ. (B) Visualization of the pairwise-level collision ratio in TargetDiff and NucleusDiff during
the inference on the CrossDocked2020 dataset. (C) Visualization of the pairwise-level collision ratio in TargetDiff and NucleusDiff during the inference on the
COVID-19 therapeutic target. (D) Visualization of the binding affinities (in Vina Dock) for 10 K sampled ligands and given proteins.

problem, p(xL, vL|vP , xP). Notice that NucleusDiff improves
this objective function by introducing nucleus-level modeling
combined with manifold-sensitive constraints of small molecules,
and the problem formulation becomes p(xN , vN , xM |vP , xP).
More details will be discussed in Materials and Methods.

2.2. Atomic Collision. and Collision Ratio Metrics The atomic
collision occurs when two atoms come too close to each other,
contradicting the physical constraints. We introduce the covalent
radius d to measure it, as the covalent radius is a more strict
quantity involving the covalent bonding. Suppose we have one
ligand atom coordinate xi, one protein atom coordinate xj, and
the corresponding covalent radii are di and dj, respectively. Then
during the sampling stage for ligand generation, if two atoms
get too close to each other, i.e., ‖xj − xj‖ ≤ Dij = di + dj, we
refer to this as the atomic collision problem. To quantify this in
existing deep generative models, we propose three ratio metrics
from three granularities. For clarity, we only present one of the
representative metrics in the main article.
2.2.1. Pairwise-level collision ratio (PLCR). The metric is the atom
PLCR, which quantifies the collision ratio between all the ligand
atoms and protein atoms. For each ligand atom (xLi ), we extract
its K nearest protein atoms within the binding site. Then the
PLCR is defined as

PLCR =

∑
k∈Nmol,i∈N k

atom,j∈N i
nearest

1(‖xi − xj‖ < Dij)

K ·
∑

k∈Nmol
N k

atom
, [1]

where Nmol is the number of ligand molecules, N k
atom is the

number of atoms in the k-th molecule, N i
nearest is the number of

the nearest protein atoms of the t-th ligand atom, and 1(·) is the
indicator function.

We present the other two metrics in SI Appendix. The proposed
collision ratio metrics assess the atomic collisions between pockets
and generated ligands, enhancing our understanding of the
generative model’s inference process for structure-based drug
design. We initially test them on the generated ligands by a state-
of-the-art generative model (7). As illustrated in Fig. 2, existing
works exhibit the atomic collision issue to a certain extent.

To overcome this collision, these metrics can be directly
incorporated into the training objective when modeling, but
the computational complexity of these metrics is as high as
O(NmolN 2

atom), where Nmol is the number of molecules and
Natom is the combined number of atoms in the molecule and
the protein pocket. Subsequently, we introduce NucleusDiff, an
efficient model with higher binding affinities and lower atomic
collisions.

2.3. Manifold-Constrained Nucleus-Level DDPM: NucleusDiff.
We propose NucleusDiff to reduce the atomic collision in the
deep generative model for the structure-based drug design. The
main idea is to jointly model the atomic nucleus and the mesh
points of the surrounding manifold using a denoising diffusion
model. In this section, we provide a brief introduction to
NucleusDiff, and more detailed descriptions can be found in
Materials and Methods.
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2.3.1. Diffusion model for geometry generation. We first intro-
duce the denoising diffusion model for density estimation on
general geometries, x. The denoising diffusion probabilistic
model (DDPM) consists of two stages: a forward and a backward
process (14). The forward process gradually adds noise to the
input geometric data x0 = x to a prior Gaussian distribution xT ,
and the backward process is the denoising process from the prior
distribution to the data distribution. In concrete, suppose the data
distribution is x ∼ q(x), and we have T forward and backward
steps with the scheduled variance {�t}Tt=1. Then each forward step
can be represented as q(xt |xt−1) = N (xt ;

√
1− �txt−1, �t I),

which gives q(xt |x0) = N (xt ;
√
�̄tx0, (1 − �̄t)I), where �t =

1 − �t and �̄t =
∏t

s=1 �s. Following the Bayes theorem, the
posterior q(xt−1|xt , x0) can also be expressed as a Gaussian
distribution:

q(xt−1|xt , x0) = N (xt−1; �̃(xt , x0), �̃t I), [2]

where �̃(xt , x0) =
√
�̄t−1�t
1−�̄t x0 +

√
�t(1−�̄t−1

1−�̄t xt and �̃t = 1−�̄t−1
1−�̄t .

The goal is to maximize the log-likelihood of data distribution
p(x), and after reparameterization, we aim to directly predict
the ground-truth coordinates x0 with a parameterized network
x̂0 = ��(xt , t). The training objective is

Lt−1(x) = Eq
[
‖x0 − x̂0‖

2]. [3]

Please refer to the DDPM paper for detailed derivations (14).
Eq. 3 holds for arbitrary density estimation, and in the

following paragraphs, we will discuss how we adapt this for our
proposed NucleusDiff for structure-based drug design.
2.3.2. Nucleus-level diffusion model for ligand generation. In our
task, the goal is to model the atomic types and coordinates in
ligands given the pocket structure: p(vL, xL|vP , xP). The training
objective includes a categorical term Lt−1(vL) on atomic types
and a continuous term Lt−1(xL) on atomic coordinates (7).
Recall that with loss of generality, we can interchange atom
information (type and coordinate) with nucleus information
(type and coordinate), i.e., vN = vL and xN = xL.

In this paragraph, we mainly discuss the continuous objective
Lt−1(xN ), while the discrete objective function Lt−1(vN ) over
atomic type is described inMaterials andMethods. Then adopting
Eq. 3 for atomic coordinates, the training objective becomes

Lt−1(xN ) = Eq
[
‖xN0 − x̂N0 (xNt , t, v

P , xP)‖2
]
. [4]

We note that the parameterized network x̂N0 should be equiv-
ariant to the rotations and translations of the whole molecular
system (14–16). On the other hand, recent works (8) claim that
such SE(3)-equivariant modeling is unnecessary for achieving
high binding affinities in structure-based drug design tasks.
Meanwhile, the manifold constraint introduced in NucleusDiff
is agnostic to the design of the parameterized network, and we
follow the state-of-the-art method in this work (7).
2.3.3. Manifold-constrained nucleus-level diffusion model for
ligand generation. To reduce the atomic collision, we introduce
an extra constraint term that keeps the distance between the
nucleus and the mesh points over the manifold as van der Waals
radius, R. This constraint ensures that the atomic distances are
maintained within reasonable bounds, preventing geometric
overlaps. To adopt this into modeling, for each nucleus, we
obtain its K closest mesh points in the manifold, marked as
xM . Thus, the goal becomes to maximize the joint distribution

of nuclei and mesh points conditioned on the pocket, as
p(vN , xN , xM |vP , xP). To adapt this into Eq. 3, the objective of
the sampled mesh points is

Lt−1(xM ) = Eq
[
‖xM0 − x̂M0 (xMt , t, vP , xP)‖2

]
. [5]

On the other hand, recall that the mesh points are scattered
around the nuclei with a fixed van der Waals radius R. Thus we
add a regularization term by forcing the distance between each
corresponding mesh point xNj and nucleus xMi to be close to R:

Lt−1(xN , xM , R) =
∑
i

∑
j

‖‖x̂N0 (xNt , t, v
P , xP)

− x̂M0 (xMt , t, vP , xP)‖ − Rij‖.
[6]

To be precise, we adopt a slight decoupling trick in imple-
menting the regularization term in Eq. 6. That is, the denoised
outputs x̂N0 and x̂M0 are not necessarily derived from the same
timestep t, but rather from potentially different timesteps tN and
tM for the nucleus and mesh points, respectively. This design
choice improves training flexibility and stability, allowing the
network to independently refine the representations of atomic
centers and manifold surfaces.

Lreg(xN , xM , R) =
∑
i

∑
j

‖‖x̂N0 (xNtn , tn, v
P , xP)

− x̂M0 (xMtm , tm, v
P , xP)‖ − Rij‖.

[7]

We call such a manifold-constrained nucleus-level modeling as
NucleusDiff. The overall objective function of the NucleusDiff is

L = Etn [Ltn−1(xN ) + Ltn−1(vN )]

+ Etm [Ltm−1(xM )] + Etn,tm [Lt−1(xN , xM , R)].
[8]

2.4. Experimental Setup.
2.4.1. Datasets. We conduct experiments on two datasets. 1) We
first utilize CrossDocked2020 (9) to train and evaluate our model.
Following the approach of ref. 4, we refine the dataset of 22.5
million docked protein–ligand binding complexes by selecting
the poses with a rms deviation (RMSD) of less than 1 Å and pro-
tein sequence identity below 30%. Ultimately, we have 100,000
complexes for training and 100 complexes for testing. 2) We also
carry out experiments on the COVID-19 target. Additionally,
we assess the generalization abilities of NucleusDiff on two other
real-world therapeutic targets, as detailed in SI Appendix.
2.4.2. Mesh point construction. We utilize MSMS (17) to com-
pute the solvent-excluded surface of the molecule. It generates
a triangular mesh data structure for small molecules, and we
set the argument probe radius to 1.5 Å and sampling density
argument to 3.0*. MSMS possesses certain challenges such as
degenerate vertices and disconnected surfaces, which can disrupt
the uniform distribution of mesh points. We employ PyMesh
to overcome these issues (13). It enhances the mesh quality by
reducing the vertex count and correcting errors in poorly meshed
regions. Finally, we select the K mesh points that are closest to
the van der Waals radius from the nucleus to construct a mesh
point dataset. Notably, this mesh point data structure, which
predominantly includes the 3D coordinates of the mesh points, is
only required during the learning phase and not during inference.

*These parameters are specific to dataset preprocessing rather than the core model
architecture, and thus we consider a full sensitivity analysis to be unnecessary.
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2.4.3. Baselines. For benchmarking, we compare with various
baselines: liGAN (18), AR (4), Pocket2Mol (6), GraphBP (5),
PMDM (19), and TargetDiff (7). liGAN (18) is a 3D CNN-
based method that generates 3D voxelized molecular images
following a conditional VAE scheme. AR (4), Pocket2Mol (6),
and GraphBP (5) are GNN-based methods that generate 3D
molecules by sequentially placing atoms into the protein binding
pocket. We choose AR-SBDD (4) and Pocket2Mol (6) as
representative baselines due to their outstanding performance.
TargetDiff (7) and PMDM (19) are the state-of-the-art models
in this research line, and they both employ a diffusion-based
technique for generating atom coordinates and types.

2.5. Atomic Collision Evaluation on CrossDocked2020.
2.5.1. The collision metrics. To gain a comprehensive understand-
ing of how the atomic collision problem evolves during the
inference process of diffusion-based probabilistic models (14)
for structure-based drug design, we compare NucleusDiff with
the state-of-the-art model in this research line, TargetDiff (7).
For both methods, we use 1,000 timesteps for training and
inference. We analyze the PLCR metric for atomic collision at 11
timesteps, sampled every 100 intervals from Step-0 to Step-1000.
We present the atomic collision from Step-700 to Step-1000 in
Table 1, with the complete results available in SI Appendix.
2.5.2. Analysis. As shown in Table 1, TargetDiff maintains stable
atomic collision ratios from Step-700 to Step-1000. In contrast,
NucleusDiff demonstrates consistently lower atomic collision
ratios during these inference steps. Notably, NucleusDiff outper-
forms TargetDiff by nearly an order of magnitude in terms of the
PLCR metric. In the final sampling step, NucleusDiff achieves
an almost negligible Collision ratio, further demonstrating its
superior performance. As illustrated in Fig. 2, the convergence
trends of NucleusDiff and TargetDiff differ markedly when
evaluated using the PLCR metric, with NucleusDiff demon-
strating a significantly more pronounced convergence. More
comprehensive results and analyses of NucleusDiff’s atomic
collision performance are provided in SI Appendix.

2.6. Binding Affinity Evaluation on CrossDocked2020.
2.6.1. The general metrics. The Vina Score, Vina Min, and Vina
Dock metrics are employed to evaluate the binding affinity and
potential biological efficacy of small molecule drug candidates
in interaction with target proteins, via the computation of
docking efficiency scores. Following the methodologies outlined
in refs. 4, 6, and 7, we utilize the open-source AutoDockTools
software (20) for these calculations. The High Affinity metric
gauges the strength of the ligand-target protein interaction.

Additionally, we follow existing works and consider three
more metrics (4, 6, 7). QED provides a numerical assessment
of a compound’s drug-like characteristics, with higher values
indicating a greater propensity for a compound to embody

Table 1. The performance among pocket–ligand pairs
for structure-based drug design in the CrossDocked2020
and COVID-19 target

CrossDocked2020 COVID-19 target

Models TargetDiff NucleusDiff TargetDiff NucleusDiff

Step-700 78/2300930 7/2300930 23/210000 5/210000
Step-800 77/2300930 2/2300930 17/210000 1/210000
Step-900 78/2300930 4/2300930 12/210000 1/210000
Step-1000 65/2300930 0/2300930 05/210000 3/210000

successful drug attributes. SA quantifies the ease with which a
compound can be synthesized. Last, Diversity measures the range
and heterogeneity of molecular structures and properties across a
set of compounds.
2.6.2. Analysis. We generate 100 ligand molecules for each
protein target in the test set, resulting in a total of 10,000
molecules. The size of each generated molecule, i.e., the number
of atoms in each molecule, is determined by sampling from the
size distribution observed in the training set. The comprehensive
results for NucleusDiff and the baselines are displayed in Table 2.

We note that NucleusDiff surpasses all baseline models on
8 out of 14 evaluated metrics, with the exceptions of QED,
SA, and Diversity. In Table 2, NucleusDiff is only surpassed by
GraphBP (5) in terms of Diversity, yet it exhibits superior per-
formance compared to another diffusion model, TargetDiff (7).
According to the average Vina Dock, NucleusDiff generates
molecules with high affinities to the pockets (−7.90), which
is 6.43% better than the best autoregressive model baseline, AR-
SBDD (4), and 22.16% better than the best diffusion model
baseline, TargetDiff (7). Besides, NucleusDiff surpasses AR-
SBDD (4) and TargetDiff (7) on average High Affinity (60.1%)
by 58.6% and 6.7%, and average Diversity (0.74) by 6.71% and
4.23%. On the other hand, the SA of generated molecules should
fall within a reasonable range so that the ability to explore the
molecular space confined by protein pockets is high enough to
discover potential molecules. As shown in Table 2, the average
QED of NucleusDiff (0.39) is slightly lower than that of AR-
SBDD (4) (0.51) and TargetDiff (7) (0.48), but remains com-
parable to that of liGAN (18) (0.39), implying that NucleusDiff
satisfies this desired property. Notably, the molecules generated
by NucleusDiff perform even better than those in the test set on
Vina Score, Vina Min, and Vina Dock, suggesting that Nucle-
usDiff has great potential to generate more drug-like molecules
with higher affinity. NucleusDiff models the constraints between
atomic nuclei and their surrounding manifold to prevent atomic
collision, which is important for the generation of high-affinity
and realistically viable pharmaceuticals. Although TargetDiff (7),
a diffusion-based model, also generates molecules by sampling
from a learned distribution, it solely considers the positional
information of atomic nuclei when learning the distribution
of atoms, which does not incorporate geometrical constraints
to maintain reasonable atomic distances. Consequently, it is
reasonable to assert that the NucleusDiff model, as a geometric
diffusion generative model incorporating the manifold con-
straints, provides critical insights for the generation of molecules
and pharmaceuticals with high binding affinities.

2.7. Case Study of NucleusDiff on COVID-19 Target. Scientists
and drug designers are particularly interested in how deep learn-
ing models generalize to real-world problems, where practical
constraints and biological variability should be considered. To
this end, we follow previous work and conduct a case study
focused on a COVID-19-related therapeutic target (11). This
case study allows us to assess the practical utility of NucleusDiff
in addressing critical and timely challenges in structure-based
drug design. In this context, we generate molecules targeting
the COVID-19 therapeutic target and subsequently evaluate
their binding affinities and drug-likeness properties using the
same set of metrics discussed earlier, including the Vina Score,
Vina Min, Vina Dock, QED, SA, and Diversity. Last, we
assess the performance of NucleusDiff and TargetDiff on this
COVID-19-related therapeutic target using the proposed PLCR
metric.
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Table 2. A summary of 14 biochemical properties for reference ligands and molecules generated by baseline models
and NucleusDiff

Vina score (↓) Vina min (↓) Vina dock (↓) High affinity (↑) QED (↑) SA (↑) Diversity (↑)

Metrics Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

Reference −6.36 −6.46 −6.71 −6.49 −7.45 −7.26 − − 0.48 0.47 0.73 0.74 − −

liGAN∗ − − − − −6.33 −6.20 21.1% 11.1% 0.39 0.39 0.59 0.57 0.66 0.67
GraphBP∗ − − − − −4.80 −4.70 14.2% 6.7% 0.43 0.45 0.49 0.48 0.79 0.78
AR-SBDD −5.75 −5.64 −6.18 −5.88 −6.75 −6.62 37.9% 31.0% 0.51 0.50 0.63 0.63 0.70 0.70
Pocket2Mol −5.14 −4.70 −6.42 −5.82 −7.15 −6.79 48.4% 51.0% 0.56 0.57 0.74 0.75 0.69 0.71
TargetDiff −5.01 −5.69 −6.33 −6.47 −7.62 −7.64 56.3% 57.3% 0.48 0.48 0.59 0.58 0.71 0.71
PMDM −5.65 −5.63 −6.35 −6.39 −7.60 −7.58 59.4% 62.7% 0.59 0.60 0.58 0.59 0.70 0.70
NucleusDiff (ours) −6.12 −6.80 −6.93 −6.85 −7.90 −7.76 60.1% 63.0% 0.39 0.39 0.53 0.53 0.74 0.73

The symbols (↑) and (↓) indicate a higher or lower value of the metric is preferable, respectively. “Avg.” and “Med.” represent average and median values, respectively. Due to incompatibility
between certain atom types produced by liGAN (18) and GraphBP (5) and the parsing capabilities of AutoDock Vina, we employ QVina (21) to conduct the docking simulations for these
two methods. The bold values indicate the best (top-ranked) performance among all methods for each metric, while the underlined values indicate the second-best performance.

2.7.1. Atomic collision evaluation. To evaluate the performance
of NucleusDiff on the COVID-19 therapeutic target, we
conduct a comprehensive comparison with TargetDiff. Both
methods utilize diffusion-based models, enabling a thorough
understanding of atomic collisions during the inference process
of DDPM (14). Our evaluation involves the 3CL protease as a
real-world therapeutic target, with its experimentally validated
active ligands. For both NucleusDiff and TargetDiff, we set an
identical number of timesteps (1,000) for inference. We analyze
the collision ratio metric PLCR at 11 timesteps, sampled every
100 steps from Step-0 to Step-1000, and the main results are
summarized in Table 1. We observe that TargetDiff shows a
significant reduction in atomic collisions from Step-0 to Step-
1000. However, NucleusDiff maintains a consistently lower
collision ratio throughout the inference steps. Notably, Nucle-
usDiff outperforms TargetDiff in the PLCR metric, achieving
improvements of up to 66.7%. Specifically, in the final sampling
steps, NucleusDiff achieves an almost negligible atomic collision
ratio, verifying the effectiveness of our design.

Fig. 2 visualizes the collision ratio for both methods across
the COVID-19 target (3CL), revealing a marked contrast
in the convergence trends. NucleusDiff demonstrates a more
pronounced and rapid reduction in collision ratios compared to
TargetDiff, underscoring its potential for addressing challenging
targets in real-world drug design, such as those encountered in
COVID-19 research.
2.7.2. Binding affinity evaluation. We compare the performance
of NucleusDiff and TargetDiff on a curated benchmark involving
the COVID-19 therapeutic target 3CL, assessing the 14 metrics.
As shown in Table 3, NucleusDiff outperforms TargetDiff on 8
out of 14 metrics. Specifically, NucleusDiff achieves a superior
average Vina Score of −5.85 compared to TargetDiff’s −4.82,
indicating a stronger binding affinity. NucleusDiff also excels
in the Vina Min and Vina Dock metrics, with average scores
of −6.21 and −6.74, respectively, compared to −5.61 and
−6.39 for TargetDiff. In the context of high-affinity ligands,
NucleusDiff generated 70.0% high-affinity ligands versus 50.5%
for TargetDiff, showing a clear advantage. Although NucleusDiff
has a slightly lower average QED score (0.43) compared to
TargetDiff (0.56), it still maintains acceptable drug-likeness
properties. Additionally, both models exhibit similar perfor-
mance in synthetic accessibility (SA) and molecular diversity,
with NucleusDiff achieving average scores of 0.54 and 0.73,
respectively, slightly below TargetDiff’s values of 0.62 and 0.76.
These results demonstrate that NucleusDiff is more effective
in generating high-affinity ligands while maintaining a balance

with other drug design criteria, making it a strong candidate
for real-world therapeutic applications, particularly those related
to COVID-19. We further assess the generalization capabilities
of NucleusDiff and TargetDiff on two additional therapeutic
targets, with detailed results and analyses provided in SI Appendix
due to space limitations.

2.8. The Results for Minimum Distance Constraint. Our re-
search is dedicated to addressing the critical challenge of atomic
collisions in structure-based drug design. While NucleusDiff
incorporates soft constraints during training to mitigate atomic
collisions, an alternative approach involves implementing min-
imum distance constraints during the sampling process of pre-
trained models. In this part, we rigorously evaluate the efficacy of
applying minimum distance constraints to the sampling process
of pretrained NucleusDiff and TargetDiff models, assessing
the generated molecules’ performance in terms of both atomic
collision performance and binding affinity.

Given that NucleusDiff has demonstrated near-elimination of
atomic collision on the CrossDocked2020 dataset, we conduct
a more representative experiment. This involves examining
the properties of 1,000 molecules sampled from both Nu-
cleusDiff and TargetDiff models using a minimum distance
constraint inference process, specifically targeting the COVID-
19 target (3CL). This approach enables a more thorough
evaluation of the models’ capabilities under minimum distance
constraint inference conditions, providing deeper insights into
their performance in this context.
2.8.1. Minimum distance constraint for the inference process of
TargetDiff and NucleusDiff. The high-level idea of the minimum
distance constraint is to correct the distances of atom pairs that
exhibit atomic collisions during the inference process. In this
paper, we present two types of minimum distance constraints as
postcorrection schemes:

2.8.1.1. Minimum distance constraint (parallelogram). For
protein–ligand atom pairs (a, b) with atomic collision, we first
identify atom c within the ligand that is closest to ligand
atom b. Clearly, the line connecting the protein–ligand pair
in 3D space intersects with a sphere centered at ligand atom
c, with the covalent radius equal to the distance between c and
b. One intersection point obviously becomes b, while the other
intersection point b′ becomes the corrected position of b after
applying the minimum distance constraint.

2.8.1.2. Minimum distance constraint (circle). For a protein–
ligand pair (a, b) exhibiting atomic collision, we first identify the
atom c within the ligand that is closest to ligand atom b. We
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Table 3. A summary of 14 biochemical properties for molecules generated by TargetDiff and NucleusDiff for
target 3CL

Vina score (↓) Vina min (↓) Vina dock (↓) High affinity (↑) QED (↑) SA (↑) Diversity (↑)

Metrics Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

TargetDiff −4.82 −5.08 −5.61 −5.68 −6.39 −6.49 50.5% 50.5% 0.56 0.54 0.62 0.61 0.76 0.76
NucleusDiff (ours) −5.85 −5.80 −6.21 −6.23 −6.74 −6.84 70.0% 70.0% 0.43 0.42 0.54 0.53 0.73 0.73

The symbols (↑) and (↓) indicate a higher or lower value of the metric is preferable, respectively. “Avg.” and “Med.” represent average and median values, respectively. The bold values
indicate the best (top-ranked) performance among all methods for each metric.

ensure that the distance between a and b is less than that between
a and c. Based on this condition, we construct two spheres: one
centered at protein atom a with a radius equal to the covalent ra-
dius of a and b (noting that the distance between (a, b) is less than
the summation of their covalent radius) and another centered at
ligand atom c with a radius equal to the distance between c and b.
If these two spheres intersect, their intersection forms a circular
region. By deriving the analytical expression for this circle, we
sample a new point b′ on this circle using a predetermined
random seed (42). This b′ effectively avoids atomic collisions
while preserving the ligand’s geometric characteristics. In the case
where the two spheres are tangent, the point of tangency serves as
the unique corrected position b′, avoiding atomic collisions and
maintaining the ligand’s geometric properties.
2.8.2. The atomic collision evaluation for minimum distance con-
straint. The experimental results present in Table 4 demonstrate
the efficacy of implementing minimum distance constraints
to mitigate atomic collisions in structure-based drug design,
specifically for the COVID-19 target (3CL). We evaluate the
performance using the proposed PLCR metric. For TargetDiff,
the baseline model without minimum distance constraints ex-
hibits a nonnegligible level of atomic collisions, with 5 collisions
per 210,000 atom pairs (PLCR). Notably, the implementation
of both parallelogram and circle minimum distance constraints
completely eliminates these collisions over the PLCR metric,
resulting in zero collisions for all ratios. Similarly, NucleusDiff

shows a slight improvement in the baseline performance
compared to TargetDiff, with 3 collisions per 210,000 atom
pairs (PLCR). This baseline improvement can be attributed
to the manifold-constrained modeling approach inherent to
NucleusDiff. Nevertheless, the application of minimum distance
constraints (both parallelogram and circle methods) yields the
same perfect results as observed with TargetDiff, completely
eliminating all atomic collisions.

These results underscore the validity of incorporating mini-
mum distance constraints in the sampling process of pretrained
models for structure-based drug design. Both the parallelogram
and circle constraint methods prove equally effective in resolving
atomic collisions, suggesting that either approach can be reliably
employed to enhance the physical realism of generated molecular
structures. The complete elimination of atomic collisions over the
PLCR metric for both TargetDiff and NucleusDiff when using
minimum distance constraints highlights the robustness of this
approach. This improvement is particularly significant for the
COVID-19 target (3CL), demonstrating the potential of these
methods in generating more physically viable drug candidates for
this crucial therapeutic target.
2.8.3. The binding affinity evaluation for minimum distance con-
straint. In this study, we analyze the effects of incorporating a
minimum distance constraint to the model’s inference process,
which influences the physicochemical properties of atomic-
collision molecule generated by TargetDiff and NucleusDiff for

Fig. 3. Visualization of the pockets and sampled ligands on CrossDocked2020 and COVID-19. The sampled molecules are generated using TargetDiff and
NucleusDiff. For NucleusDiff, we illustrate both the generated nucleus and manifold (marked in the green sphere). We also emphasize the use of the Vina Score
to measure the quality of generated ligands, where a lower score indicates stronger binding affinity.
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Table 4. The PLCR performance among pocket–ligand
pairs for structure-based drug design of TargetDiff and
NucleusDiff in the COVID-19 target
Models TargetDiff NucleusDiff (ours)

- 5/210000 3/210000
+ Parallelogram 0/210000 0/210000
+ Circle 0/210000 0/210000

Two types of minimum distance constraints are considered: w/ Parallelogram and w/
Circle.

the COVID-19 target, 3CL. We select one representative atomic-
collision molecule each for TargetDiff and NucleusDiff, with the
experimental results detailed in Table 5.

The results prominently demonstrate that enforcing minimum
distance constraints often leads to a decrease in binding affinity,
a critical factor in drug design. For the atomic-collision molecule
generated by Targetdiff, this trend is clearly observed. The Vina
Score, a key indicator of binding affinity where lower values
are more favorable, increases from 19.287 in the unconstrained
version to 20.124 with the parallelogram constraint and 20.270
with the circle constraint. This consistent increase in Vina Score
across both constraint methods signifies a reduction in binding
affinity. The atomic-collision molecule generated by NucleusDiff
further corroborates this trend, albeit to a lesser extent. While
the parallelogram constraint results in an invalid structure, the
circle constraint method produces a valid molecule with a slightly
higher Vina Score (−5.939) compared to the unconstrained
version (−5.946). Although this difference is minimal, it still
aligns with the overall trend of decreased binding affinity when
constraints are applied.

These findings underscore a crucial trade-off in the application
of minimum distance constraints: While they effectively address
atomic collisions, they often do so at the cost of reduced binding
affinity. This phenomenon was consistently observed across both
TargetDiff and NucleusDiff methods, indicating that it may be
a general consequence of applying such constraints rather than a
method-specific effect. The observed decrease in binding affinity
highlights the need for careful consideration when applying
minimum distance constraints in structure-based drug design.
While these constraints serve an important purpose in eliminating
atomic collisions, their potential to compromise binding affinity
could have significant implications for drug efficacy.

2.9. Visual Analysis of NucleusDiff on CrossDocked2020 and
COVID-19 Target. Fig. 3 illustrates the ligands generated by
NucleusDiff and TargetDiff, alongside reference ligands, for
specific binding pockets. We select five representative protein
pockets for structural analysis: 5NGZ, 2RHY, 4U5S, 2GNS
from the CrossDocked2020 dataset, and an additional COVID-
19 target. Both TargetDiff and NucleusDiff demonstrate the
capability to generate structurally diverse ligands that conform
to their respective binding pockets. Notably, NucleusDiff con-
sistently produces ligands with superior Vina Scores compared
to both TargetDiff and the reference ligands across all exam-
ined pockets. This is particularly evident for the COVID-19
target, where NucleusDiff achieves a remarkable Vina Score of
−8.98, substantially outperforming TargetDiff (−7.46) and the
reference ligand (−6.47). A key distinction between TargetDiff
and NucleusDiff lies in the molecular representations they
generate. While TargetDiff generates only atomic positions,
NucleusDiff provides a more comprehensive visualization by not
only displaying atomic nuclei positions but also incorporating

Table 5. The binding affinity performance of atomic-
collision molecule generated by TargetDiff and Nucle-
usDiff for target 3CL
Method Vina score (↓) Vina min (↓) Vina dock (↓)

TargetDiff 19.287 −0.543 −6.393
+ Parallelogram 20.124 −0.363 −6.387
+ Circle 20.270 −1.827 −6.075

NucleusDiff (ours) −5.946 −7.055 −7.646
+ Parallelogram Invalid Invalid Invalid
+ Circle −5.939 −6.516 −6.441

Two types of minimum distance constraints are considered: w/ Parallelogram and w/
Circle. The symbols (↑) and (↓) indicate whether a higher or lower value of the metric is
preferable, respectively.

the manifold of generated molecules. This is depicted by a green
spherical manifold encompassing the ligand structure, providing
a deeper understanding of how the molecule occupies space
within the binding pocket.

It is important to note that our evaluation of molecular
properties focuses on metrics such as binding affinity (Vina
score, Vina Min, and Vina Dock), QED (Quantitative Estimate
of Drug-likeness), SA (Synthetic Accessibility), and Diversity.
Structural similarity between the generated molecule and the
reference ligand is not necessarily required, as the generative
model is not designed to replicate these structures exactly. Also,
the reference ligand is not always the optimal drug candidate for
the target, and its structure often leaves room for improvement.
As these reference structures are typically derived through
computational chemistry methods, the ability of the generative
model to produce diverse ligands is a significant advantage.

Due to space limitations, the technical details of the manifold
generation process are elaborated in SI Appendix. However,
the manifold representation in NucleusDiff visualizations offers
crucial insights: 1) It enables the reconstruction of the ligand’s
manifold, demonstrating that the model has learned to generate
structures that adhere to van der Waals radius constraints-a
key physical property that is incorporated into our objective
function. 2) This approach sets our work apart from previous
structure-based drug design efforts by explicitly modeling and
visualizing the manifold distribution, rather than focusing
solely on atomic nuclei positions. The clear delineation of
ligand boundaries within protein pockets, especially evident
in the model’s representations, suggests that NucleusDiff not
only effectively learns the relative positioning of ligands within
pockets but also maintains proper geometric constraints to
prevent atomic overlaps. This comprehensive approach likely
contributes to the generation of ligands with improved binding
affinities and a reduced likelihood of atomic collision constraints.

3. Conclusion

In this work, we first introduce three metrics to effectively
quantify the atomic collision issue of existing deep generative
models for ligand design in structure-based drug discovery tasks.
We then present NucleusDiff, which jointly models the atomic
nucleus and the surrounding manifold to address this collision
issue. Empirical results reveal that NucleusDiff not only achieves
superior performance on existing stability and potency metrics
but also significantly mitigates atomic collisions and converges
more rapidly to the target geometric distribution.

One limitation of NucleusDiff is its current focus on modeling
the ligand manifold while neglecting the protein manifold.
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Incorporating the protein manifold into the ligand manifold
is an important aspect that we aim to explore in future work.
Additionally, NucleusDiff utilizes a discretized version of the
manifold, represented by triangle mesh points. Yet in reality,
the manifold is continuous. This requires a more profound
understanding and utilization of the first-principle theorem, and
we would like to leave this for future research.

4. Materials and Methods

Our main goal is to jointly model the nucleus and the manifold over the electron
cloud surrounding each nucleus, aiming to reduce the atomic collision issue in
the diffusion model sampling process for structure-based drug design. We first
explain how the DDPM is applied to the existing structure-based drug design
modeling. Following this, we introduce how we adopt the manifold-constrained
modeling in NucleusDiff. Last but not least, we provide more details on the train-
ing objective and inference, along with insights into the architecture specifics.

4.1. Nucleus Diffusion for Atomic Nuclei Generation. Here, our main goal
is to model the nuclei typesvN and nuclei coordinatesxN given the protein pocket
(vP , xP): p(vN, xN|vP , xP). We follow the existing DDPM for the structure-
based drug design pipeline by estimating this conditional with a categorical
diffusion model on atomic types and a continuous diffusion model on atomic
coordinates (7, 22).

In the main manuscript, we define the variance scheduler�t and�t , and how
to derive the priorq(xNt |x

N
0 )and posteriorq(xNt−1|x

N
t , x

N
0 ) for nuclei coordinates

at time t. Similarly, for the nuclei types, we use categorical distribution C, and
suppose we have K nuclei types in total. The prior distribution and posterior
distribution of nuclei types at time t are

q(vNt |v
N
0 ) = C(vNt |�̄tv

N
0 + (1− �̄t)/K),

q(vNt |v
N
t , v

N
0 ) = C(vNt |�c(v

N
t , v

N
0 )),

[9]

where �c(vNt , v
N
0 ) = �∗/

∑
k �
∗

k , and �∗ = [�tvNt + (1 − �t)/K] �
[�̄t−1v

N
0 + (1 − �̄t−1)/K], where � is element-wise product. Then after

reparameterization, we predict v̂N0 from vNt , i.e., ṽN0 = ��(vNt , t). Injecting
this into the posterior, then the objective functions for the discrete types and
continuous coordinates are

Lt−1(v
N) = KL(q(vNt |v

N
t , v

N
0 )||q(vN|ṽN0 ))

=
∑
k

�c(vNt , v
N
0 )k ·

�c(vNt , v
N
0 )k

�c(vNt , ṽ
N
0 )k

,

Lt−1(x
N) = Eq

[
‖xN0 − x̂N0 (xNt , t, v

P , xP)‖2].
[10]

4.2. Manifold-Constraint Denoising Diffusion Model. Meanwhile, the gen-
erated nuclei coordinates should adhere to reasonable geometric properties:
Atoms are not treated as solid points but consist of nuclei surrounded by
spatial constraints; thus, there exists a minimum distance between pairwise
atoms. Ignoring this can lead to the atomic collision issue. To address this, we
jointly model the geometric constraints of the manifold and the atomic nuclei for
structure-based drug design. To be more concrete, for each nucleus, we construct
a discrete manifold, where the radius is the van der Waals radius R. Then for
each nucleus, we obtain its c closest mesh points in the manifold, marked as xM.
Thus, instead of p(vN, xN|vP , xP), the objective is to maximize the following
likelihoodp(vN, xN, xM|vP , xP). The objective on the manifold at time t is Eq.5.

On the other hand, recall that the mesh points are scattered around the nuclei
with van der Waals radius R. Motivated by this, we add a regularization term by
forcing the distance between each mesh point and nuclei to be close to R as in
Eq. 6.

4.3. Learning and Inference. To sum up, the training objective function is
composed of four parts, as in Eq. 8. For the inference, because the mesh points
from manifold modeling are treated as the auxiliary components of the physics-
guided nuclei modeling, they can be ignored at this stage, while only the nuclei
coordinates are considered. We provide the detailed pseudocodes for inference
in SI Appendix.

4.4. Computational Resources. All algorithms and models have been devel-
oped using Python 3.8.13, with PyTorch version 1.12.1 and PyTorch Geometric
version 2.5.2, under CUDA 11.0. Experiments are conducted on a server with 8
NVIDIA V100 GPUs (32 GB memory) and Intel(R) Xeon (R) Platinum 8255C CPU
@ 2.50GHz. We employ a single V100 GPU for training while leveraging eight
GPUs to accelerate the sampling procedure. The models typically converge after
approximately 48 h of training and sampling 10 K ligands using eight GPUs
takes about 12 h.

Data, Materials, and Software Availability. Code and raw data have been
deposited in GitHub (https://github.com/yanliang3612/NucleusDiff) (23). We
provide the code and dataset generation scripts at this GitHub repository. The
code developed for this study is released under the MIT License.
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